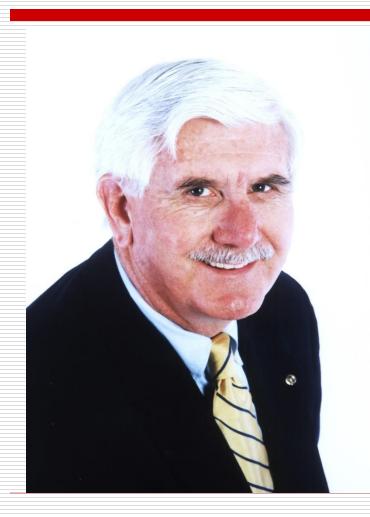
THERAPY OF THE FOCAL AND SEGMENTAL GLOMERULOSCLEROSIS (FSGS) LESION IN 2025

Richard J. Glassock, MD, MACP

Professor Emeritus

Geffen School of Medicine at UCLA

Intensive Review of Nephrology


Brigham and Women's Hosptial

(August 14, 2025)

SPEAKER Richard J. Glassock, MD, MACP, FRCP (Hon), FASN

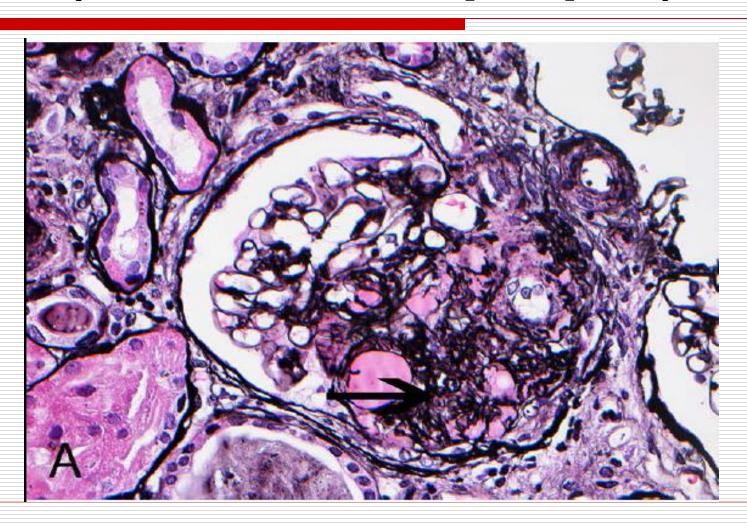
Dr. Glassock is currently Professor Emeritus at the Geffen School of Medicine at UCLA. He has had a long standing interest in clinical nephrology (glomerular diseases) and hypertension and has published over 750 papers, books chapters and monographs. He is a former President of the ASN and NKF

DISCLOSURES

- □ I have provided and/or currently provide consultation services to the following commercial entities:
- Omeros, BioCryst, Genentech, Retrophin (Travere), RenaSight (Natera), Novartis, River3Renal,, Otsuka Pharma,, Therini Bio, Arrowhead, Alexion, Vera, Zyversa, Kezar. GlycoEra, Alpine, Mironid, Orange Grove Bio, Zydus, Nkarta, Immunovant, CANbridge,, E-Star Bio, Renibus.
- I receive Stipends from Wolters-Kluwer (UpToDate) for Editorial services

LEARNING OBJECTIVES-OUTLINE

The "lesion" of FSGS and its categorization according to pathogenesis


□ The *Prognosis* of "apparently" Primary FSGS

Therapy of Primary FSGS-Evidence and Guidelines

THE LESION OF FSGS

THE LESION OF FOCAL AND SEGMENTAL GLOMERULOSCLEROSIS

(PAS-Methenamine Silver [Jones] stain)

FOCAL and SEGMENTAL GLOMERULOSCLEROSIS (FSGS)

AXIOMS TO REMEMBER

- □ FSGS is a light microscopic lesion (a "pattern of injury"), NOT A SPECIFIC DISEASE ENTITY. It is one of the "patterns of injury" observed in the diffuse podocytopathy category of glomerular lesions.
- The extreme heterogeneity of pathogenesis underlying the lesion must be taken into account in evaluating prognosis and deciding on an appropriate therapy
- The treatment must be based on specific category (pathogenesis) and highly individualized

The LESION OF FOCAL and SEGMENTAL GLOMERULOSCLEROSIS:

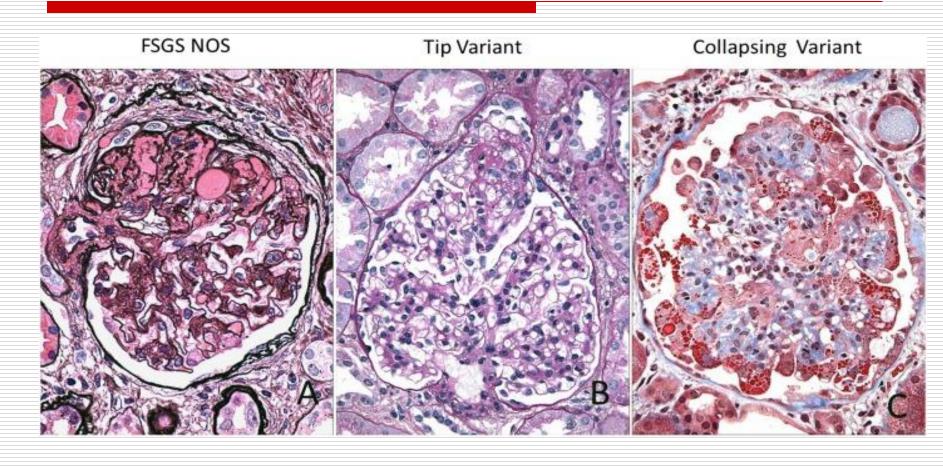
A Modern Classification

(De Vriese, A, et al Nature Reviews Nephrology, 2021; KDIGO-GN-CPG, 2021)

- Primary (permeability factor related) FSGS (pfFSGS)
- ☐ Genetic FSGS (gFSGS)
- □ Secondary FSGS (sFSGS)

Undetermined FSGS (uFSGS)

Primary (permeabilitity factor related) FSGS (pfFSGS):


A clinico-pathologic diagnosis

- Diagnostic Criteria
- Sudden onset of full- blown Nephrotic Syndrome (hypoalbuminemia- < 3.5gms/dL). Proteinuria commonly >8gms/d
- Absence of family history of CKD, no defining syndromic features, no drugs or viruses known to provoke sFSGS
- No proven genetic cause
- A FSGS lesion, with any variant by LM
- Diffuse (typically >80%) foot process (podocyte) effacement by EM (in an intact, non-globally sclerosed glomerulus), prior to any therapy
- No proven serum/urine biomarker specific for this diagnosis (? Anti-nephrin antibodies may be an exception)
- Very high risk (50-70%) for recurrence in Renal Allografts

Common Histologic Variants of FSGS lesions by Light Microscopy

90% of all FSGS lesions

(from D'Agati V, et al CJASN 2013; 8:399-406)

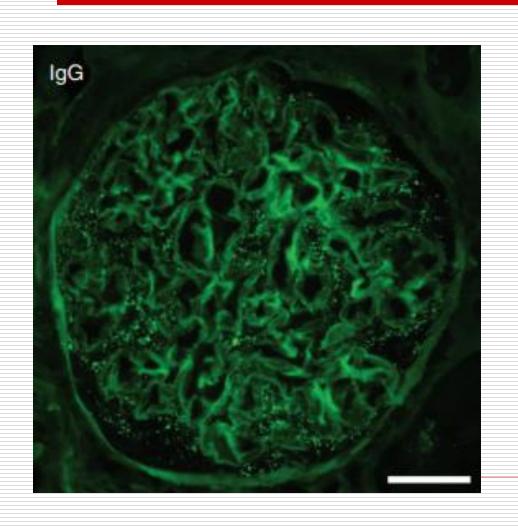
The entity of "Biopsyproven" Primary FSGS does not exist!!

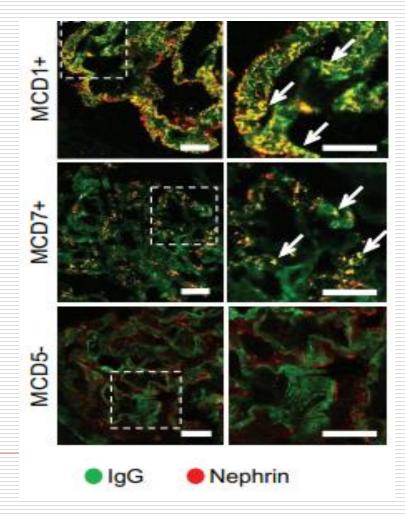
PRIMARY FSGS: Pathogenesis

Permeability Factors

- Anti- Nephrin Antibody (30-70%? -Watts AJB, et al JASN, 2022; Hengel FE, et al NEJM, 2024)
- Anti-Slit pore membrane antibodies (Raglianti V, et al Kidney Int, 2024)
- Anti-synaptopodin or Anti-Annexin I (Chebotareva N, et al Front Nephro, 2024)
- suPAR + anti- CD40
- Cardiotropin-Like Factor (Savin-Sharma) Factor)
- > II-13
- Hemopexin

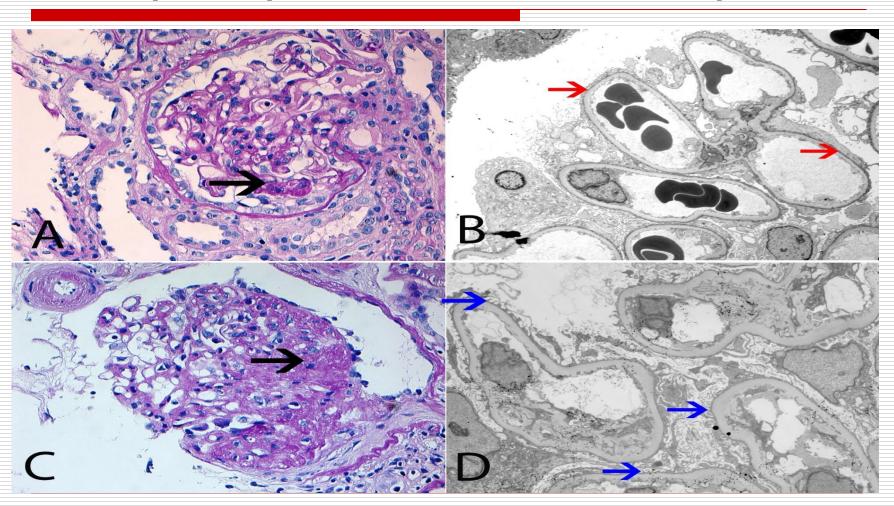
Anti-Nephrin Antibody in Recurrent Primary FSGS in Kidney Allografts


(Hattori M, et al ERA Abstract #4635- Milan- June, 2023)


- □ 14 patients with Recurrent FSGS in Kidney Allografts studied for anti-nephrin auto-antibody (ELISA with huR-Nephrin extra-cellular domain; cutoff value= 172U/ml)
- Recurrent Primary FSGS- 11/14 +
- Genetic FSGS-0/9 +
- MN- 0/13+
- \rightarrow LN- 0/4 +
- Healthy Controls- 0/13 +

NO CURRENTLY AVAILABLE FDA-APPROVED ASSAY FOR ANTI-NEPHRIN AUTOANTIBODIES

IgG and Nephrin in ANAb+ Primary MCL (MCD/FSGS)


(Watts AJB, et al JASN 2022; 33:238-252)`

Electron Microscopy in FSGS

(Courtesy of Sethi S and Fervenza F, 2014)

Genetic Testing of patients with FSGS lesions is very useful as it may direct choices of therapy and lead to the avoidance of ineffective regimens

PROGNOSIS OF PRIMARY FSGS

The FSGS Lesion-

Outcomes related to remission

(Troyanov, et al 2005)

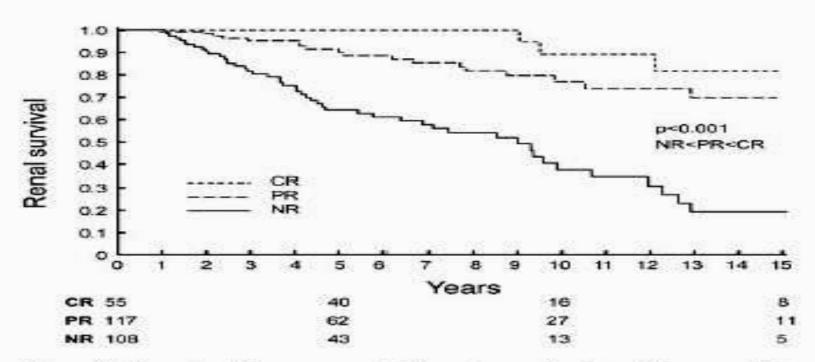
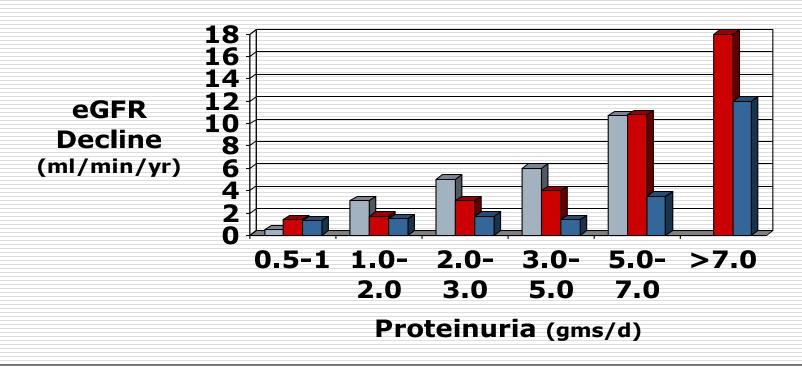



Figure 1. Survival from renal failure in patients with complete (CR), partial (PR), and no remission (NR). One patient in the NR group had a creatinine clearance <15 ml/min per 1.73 m² at presentation and was excluded from the survival analysis.

Time Averaged Proteinuria and Decline of eGFR (Males)

(Cattran D, et al NDT 23:2247-2253, 2008)

■ IgA Nephropathy

- **■** Focal Glomerular Sclerosis
- Membranous Nephropathy

THERAPY OF PRIMARY FSGS

THERAPY of PRIMARY (permeability factor related) FSGS: KDIGO-GN-CPG (Kidney Int- October, 2021)

- In Adults- Treatment with IS agents (Steroids or CNI) can proceed without Genetic Testing (unless FH+ or syndromic presentation) irrespective of sub-variant of lesion (? Except Collapsing)
- Genetic testing (Whole Exome Sequencing Panels) should be seriously considered if Steroid and/or CNI resistant.
- High-dose oral glucocorticoids should be used as "first-line" treatment for presumed pfFSGS
- CNI (Tacrolimus or CsA) monotherapy can also be used for initial therapy in patients with relative or absolute contra-indications for high-dose glucocorticoids.

pfFSGS:

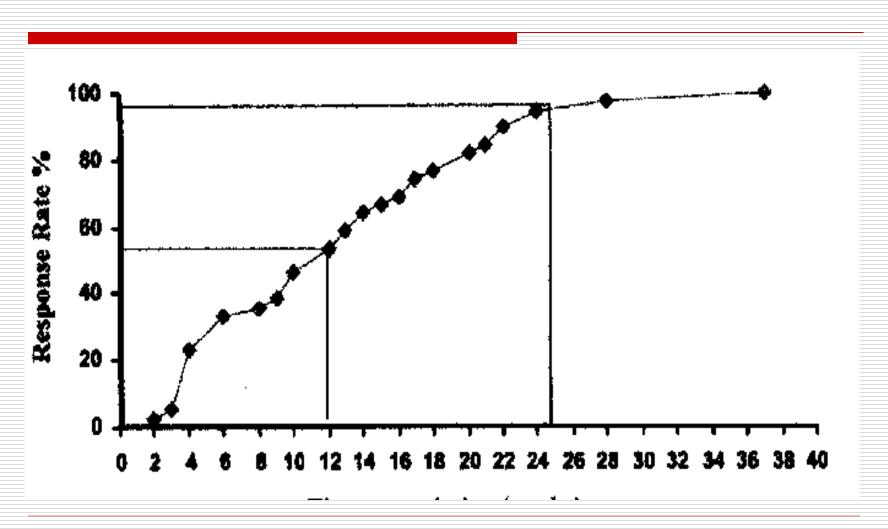
Steroid or CNI regimens for initial therapy (From KDIGO- 2021

□ Steroid*:

- 1mg/kg/d (maximum 80mg/d) or 2 mg/kg/qod (maximum 120mg/qod. Single dose at 9-10AM
- Continue high-dose for 4 weeks and complete remission achieved, or a of 16 weeks, whichever is earlier, Gradual reduction in dose can be employed if proteinuria diminishes during therapy.
- Total duration of therapy- 6 months
- □ *CNI***
- CsA- 3-5mg/kg/d in 2 divided doses; Tacrolimus- 0.05-0.1mg/kg/d in 2 divided doses
- Trough levels monitored to avoid toxicity- CsA-= 100-175ng/ml; TAC- 5-10ng/ml
- Treatment duration -12 months. If no response, 4-6 month maximum, Discontinue if eGFR declines to <30ml/min/1.73m2</p>

(* based on observational studies, no RCT; ** based on RCT)

pfFSGS in nephrotic adults:


Response to Steroid Therapy

(Chun MJ et al JASN 2004;15:2169)

- Out of 87 patients with presumed Primary FSGS, 63% of treated patients responded with complete (33%) or partial (30%) remission
- 10-year renal survival 92% for responders vs 33% for non-responders (P< 0.0001)</p>
- No difference in response between patients with tip lesion, NOS, or Collapsing lesions

Time to Remission (weeks) in Steroid-Treated Primary FSGS in Adults who developed a remission

(Jafry N, et al. NDT, 2012; 27:1101-1106)

Initial Response to Steroids may Predict Later Response to Alternative Therapy (especially CNI)

Rood IM et al 2022, KI Reports; 7: 87-98)

- □ A decrease of >20% in proteinuria compared to baseline within the first 8 weeks was strongly associated with a subsequent response to continued steroids and/or addition of alternative IS therapy (e.g CNI)
- <20% decrease in proteinuria- 3/10 (30%) responders</p>
- > >20% decrease in proteinuria- 23/24 (96%) responders

CsA in SRNS due to FSGS:

A RCT

(Cattran DC, et al KI. 1999;56:2220; (6 months at 4mg/kg; CsA/Untreated Control)

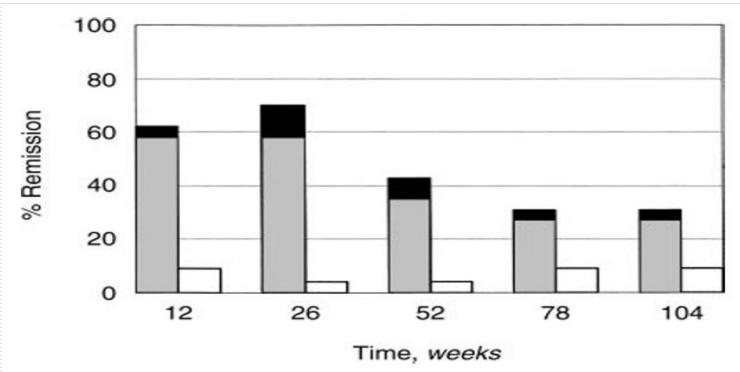
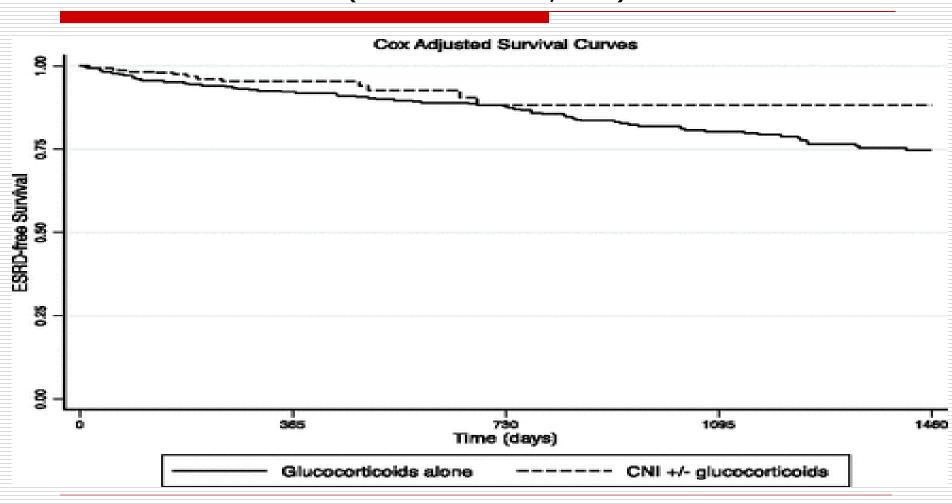



Fig. 1. Remission in proteinuria in the cyclosporine treated (\blacksquare , partial; \blacksquare , complete) compared with the placebo treated (\square , partial) at different time points of the study. At week 26, P < 0.001, and at 104 weeks P < 0.05.

INITIAL TREATMENT OF PRIMARY FSGS WITH CNI OR STEROID MONOTHERAPY-

ESKD Outcomes at 3 years

(Laurin et al CJASN, 2016)

RITUXIMAB IN PRIMARY FSGS LESIONS

- Repetitive doses (2-4 cycles) of RTX may be effective in sustaining CR or PR in steroiddependent, relapsing Primary FSGS (Osterholt T, et al Sci Rep, 2023)
- □ Therapy of RTX is rather ineffective in Steroid resistant Primary FSGS, especially with elevated serum suPAR levels (Hladunewich M, et al KI Reports, 2022, Tedesco M, et al KI Reports, 2022)
- Will RTX be effective in steroid- resistant Primary FSGS with + anti-nephrin antibody? (unknown)

RITUXIMAB in PRIMARY FSGS (Adults)

(Tedesco M, et al KI Reports. 2022; 7:1878-1886)

	Steroid-Resistant	Steroid Responsive/ Dependent
Responsive at 3 months	0/9	8/13
Responsive at 12 months	1/9 (all partial)	8/14

RITUXIMAB in CNI-RESISTANT FSGS

(>6 months of therapy with CNI) (Chan EY, et al. Kidney Int 2024; 106: 1146-1157)

- □ Retrospective observational multiinstitutional study of 146 children with CNI-treatment resistant NS and an FSGS (58%), MCD (27%) or other lesion (12%) treated with RTX
- Complete Remission at 12 month-16%
- Partial Remission at 12 months-19%

Obinutuzumab for Immunosuppression Dependent/Resistant Primary FSGS (Zand L, et Al ASN Renal Week, 2024)

A single center, phase 2 open-label trial evaluating the efficacy and safety of obinutuzumab in treatment of immunosuppression-dependent/ resistant primary FSGS, or contraindication to high-dose corticosteroids

Ladan Jand", Eddie L. Green", West Cheungseitporn", Minia I. Vanger", Miniam S.F.A. Madrado", Sanjeev Sethi, "Pierre Ronco", Fernando C. Fervera al

3. Dis blow of Nephralogy and Hyge dension, Mayo Clair, Parketon, MN 3. Disblom of Pathology and Laboratory Mediator, Mayo Clair, Rocketon, MN 3. Dense Hospital, Park, Prance

BACKGROUND

- High-dose conticosteroids are first line therapy for treatment of patients with primary FSGS.
- Up to 60% if patients do not respond or a lapse.
- Additional IS therapy with CM or rituximals may be needed.
- Many do not respond to additional IS and will have a processive course.
- There is a need for alternate therapies in such patients.

CBUECTIVES

To evaluate the safety and afficacy of obinutus mab (a type II anti-CD20 drug) in patients with primary PSGS

METHODS

- An open label phase 2 clinical trial

Inclusion Oriberia:

- Biopsy proven F 9GS testion on LM
- Presence of diffuse toot process effacement (400%) on EM
- Clinically: > 3.5 gid of proteinuris and serum album in < 3.5 gid.
- eGFR > 20 million (1.70 m²)
- Resistant or dependent to IS therapy or patient.
 unable or refused to take steroids.

METHODS

Exclusion Criteria:

- Active infection (Hep B, Hep C, HIV)
- Hob < 0.0 or platelets: 1007000
- Prednisore > 10 regidey in the last 30 days.
- FRTX previously, CDS0 court of < 5 cells/microller.
- Cyclophosphanide use in the last 6 months.
- Patient allowed to be on CN but had to taper within 2 weeks after receiving objusticum to the copy
- · Pregnant or breast-feeding.

TREATMENT

Obinutusumab IV 1 gram x 2 doses 2 weeks apart at months 0 and 6

Pre-treatment with agataminophen diphenhydramine and methylorednisolone

All patients acceived PCP prophylaxis.

ENDPOINTS

Primary Endosint:

- Change in proteinuria from baseline to 6 and 12 months post-obinutururusb investment

Secondary Endpoints

 Rate of partial and complete emission (CR: proteinuria < 0.3g/d and no more than 20% decline in eGRR)

ENDPOINTS

- PR: 50% reduction in proteinuria and < 3.5 gid and no more than 20% decline in eGFR:
- In provement in sesure albumin at 6 and 12 months.
- Stabilization of kidney function at 6 and 12 months.
- Rate of serios adverse events
- Sustained effect on proteinuria up to 18 and 24 months.
- Presenting 12-month data.

RESULTS

- Twenty patients were enrolled
- Average age: 453 ± 17.5, 55% male, sBP: 132 ± 17.5 mmHg, dBP: 77.1±9.5 mmHg
- On average patient had failed 2-3 prior therapies (steroids or CNI)
- At 12 months, 8/20 had entered CR/PR.
- An additional 3 patients did not meet criteria for CR/PR but had at least 50% reduction in proteinuria

RESULTS

TABLE 1 patients laboratory and urine study data

	Baseline	6 months	12 months	P-value*
	N=20	N=20	N=20	
Serum creatinine (mg/dL)	1.67 ± 0.83	1.65 ± 0.81	1.44 ± 0.67	0.15
eGFR (ml/min/1.73m ²)	48 (28, 89)	48 (34, 93)	62 (37, 95)	0.04
Serum albumin (g/dL)	2.5 ± 0.6	3.1 ± 0.8	3.5 ± 0.8	<0.001
Total cholesterol (mg/dL)	285 ± 120	277 ± 132	213 ± 49	0.002
LDL cholesterol (mg/dL)	194 ± 122	175 ± 148	122 ± 40	0.008
Proteinuria (g/d)	10.7 (7.5 , 13.7)	7.3 (4.0 , 10.3)	3.8 (1.5 , 8.6)	0.001
B-cell counts (cells/µl)	160 (75 , 251)	0 (0, 1)	0 (0,0)	<0.001

RESULTS

- 3 serious AE 2 in one (suiddel ideation * pseudo-seizure) and 1 foli cular lymphome
- Most common AE: infusion-related reaction (7/20)
- There 7 in fections but no ne required hospital zation.
- Three of the 7 infections were COVID-19 pre umonia.

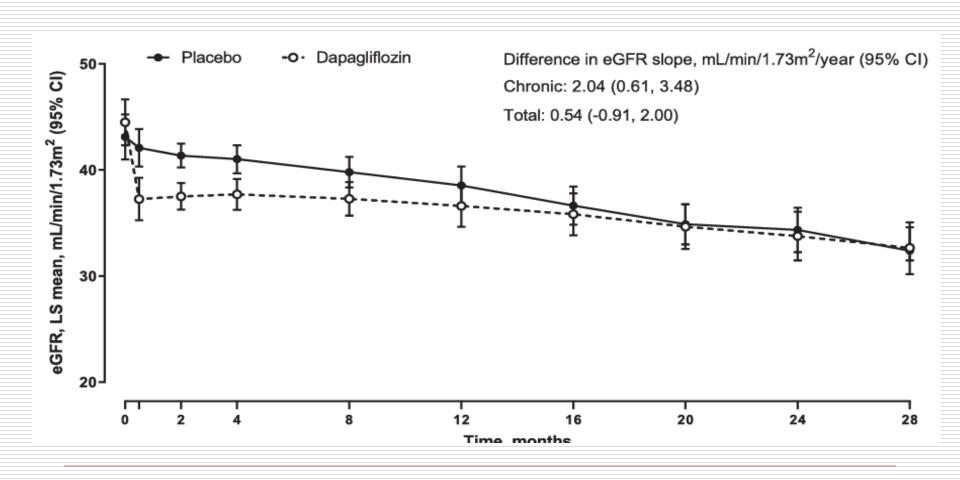
CONCLUSIONS

Obinutuzumab significantly reduced proteinuria in patients with primary FSGS who had failed at least 2-3 prior therapies. Reduction in proteinuria was associated with an improvement in eGFR and serum albumin with an acceptable side effect profile and appropriate B-cell depletion

REFERENCES.

- Encounted D, Rodent et J, Ernst D, et al. High Dirac Educates at Incitivative For Found Segmented Chemometricalese in: A Long. Term Observation B only. Am J Nephrod 2017 40: 20. 100-17.
- Kamachandon B, Kamac V, Rei hi M, et al. Taconim as though in adult associational architecture photologyale made in a fixed segment 4 glomeralise density single and or copied cases. Nephral Dial Tamoplant 20 (4):20(10):1918-24.
- Klem Ji N, Franzale PC, Zur d L. Increase I furnish and of patients with retirating PLACE associated in an increase surple upode; with all instances de; A uport of 2 cores. And Field may Dis. 2020 Dev.7 (40):400.

PLEX/Lipid Apheresis/Immunoadsorption in Treatment Resistant Primary FSGS:

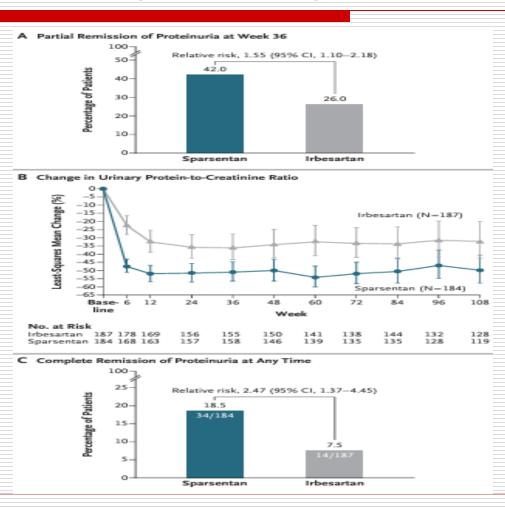

A Systematic Review

(Adapted from Miao J, et al Renal Failure 2023; 45: 2176694; non ESKD patients only)

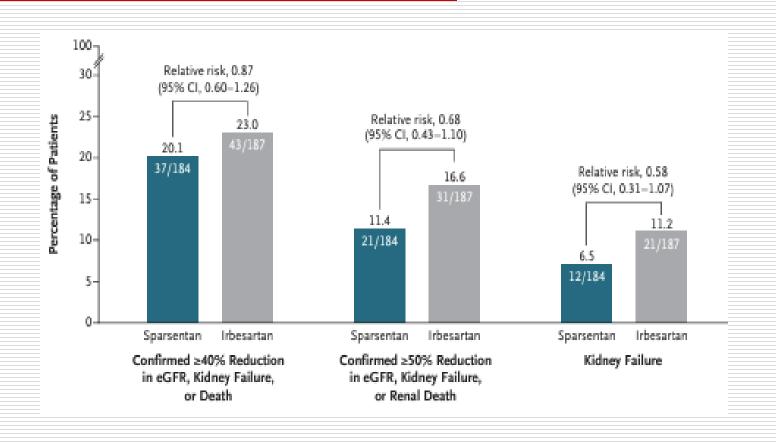
	Complete Remission	Partial Remission	No Response
PLEX (n=30)	8/30	11/30	21/30
Lipid Apheresis (n=29)	12/29	1/29	17/29
Immunoadsorptio n (n=10)	0/10	4/10	6/10
TOTALS	20/69 (29%)	16/69 (23%)	33/69 (48%)

SGLT2i in Steroid-resistant FSGS

(Wheeler DC, et al NDT 2022; 37:1647-1656)


Sparsentan in FSGS Lesion The DUPLEX Trial

(Rheault MN, et al. NEJM 2023; 389:2436-2435)


- 371 patients with FSGS lesions (either presumed Primary or Genetic) were randomized to Sparsentan (N=184) or Irbesartan for 108 weeks.
- Surrogate pre-specified EP at 36 weeks- UPCR <1.5gm/gm and and >40% reduction in UPCR from BL. Primary efficacy EP estimated Total eGFR slope (BL to 108 weeks). Secondary Efficacy EP Chronic eGFR slopee (from 4week to 112 week- 4 weeks after end of treatment)
- BL values -UPCR (median)=3.1gm/gm (2.4-4.7 IQR); Salb= 3.5gms/dL; eGFR- 63.7ml/min/1.73m2. Genetic FSGS- (incuding APOLI High Risk alleles) 37/173 (21%) in Srasentan- 38/179 (21%) in Irbesartan

Sparsentan in FSGS Lesions The DUPLEX Trial

(Rheault M, et al NEJM, 389:2436-2445)

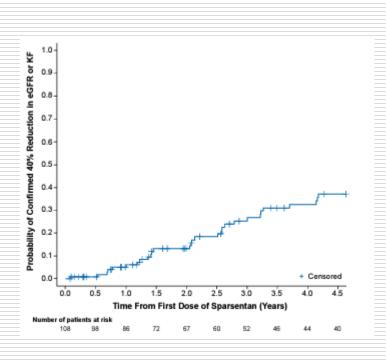
DUPLEX Trial Composite Kidney End-Points

Sparsentan in FSGS Lesions:

Long-Tem FU of the DUET Trial (Campbell KN, et al, Kidney Med, 2024; 6:10833)

- □ 103 patients with either presumed Primary or genetic FSGS initially randomized to Sparsentan (n=68) or Irbesartan (n=35) for 8 weeks, were followed during an open-label extension period of 4.4 years (all patients received Sparsentan after the initial intervention double blind period)
- BL- UPCR >3.5gm/gm- 51%; eGFR= 75±39ml/min;1.73m2; Salb- unknown

Sparsentan in FSGS Lesions


Long-Term FU of DUET Trial

(Campbell K, et al Kidney Med 2024; 6: 10833)

UPCR/Responses

0 represents baseline UPCR Weeks From First Sparsentan Dose

Confirmed 40% or more Reduction in eGFR

FSGS (not necessarily specific for pfFSGS) The pipeline of investigative (novel) drugs

- Atrasentan- an ET(A)inhibitor- not specific for pfFSGS-ALIGN
- CX-A-Nitro-FA (FIRSTx)
- FG-3019 (Fresolimumab)- anti-TGFBeta (completedineffective)
- PF-06730512 (PODO)- SGLT2 inhibitor
- VX-147- (APOL1 high risk alleles only)
- Mesenchymal stem cell/ Autologous Stem cells
- Adalimumab (TNF receptor antagonist)
- Oral galactose- terminated- ineffective
- Bleselumab
- Losmapimod
- CCX-140B (completed- results not available)
- TRPC5 inhibitor (GFB-88)
- Bardoxolone (PHOENIX)- discontinued
- Dapagliflozin (TRANSLATE)

KEY TAKE HOME MESSAGE- I

- The lesion of FSGS by LM has a very complex and highly varied pathogenesis. The "pattern- of- injury" by LM is insufficient to guide treatment decisions. A FSGS lesion should not be regarded a disease diagnosis or a basis for deciding therapy
- A FSGS lesion can be properly classified by a clinico-pathologic approach involving history (family, drug, viral infections), serum albumin concentration, level of proteinuria, EM evaluation of the extent of FP effacement, and selective analysis of genetic mutations by whole exome sequencing. A new role for anti-nephrin serology is emerging
- ☐ Four categories: *pfFSGS*, *gFSGS*, *sFSGS*, *uFSGS*

KEY TAKE HOME MESSAGES- *II*

- Underlying genetic mutations are common in adults (around 20-30%), especially in steroid- resistant disease and uFSGS with <8gms/d proteinuria.</p>
- Primary (permeability factor related) FSGS is susceptible to treatment with immunosuppressive agents (Steroids/CNI) in about 50-60% of patients and perhaps in a few patients (<10%) with gFSGS. Supportive therapy (RASi) only is indicated in sFSGS, uFSGS

KEY TAKE HOME MESSAGES- *III*

□ Treatment of multi-drug resistant forms of Primary (pf) FSGS is difficult, highly uncertain and evolving, but PLEX/IA, RTX or Obinutuzumab may be an effective approach in selected patients, especially Children. Sparsentan is currently being evaluated by the FDA for approval

THANK YOU!!!

In Vitro Assays for Permeability Factor in Primary FSGS

- Albumin permeability in isolated glomeruli- (Savin-Sharma Factor)
- Anti-Nephrin Antibody antibody (Hengel-Huber Assay; Watts-Weins Assay)
- Cultured Podocyte/Endothelial Celllipid droplet/Perilipin-2 expression
- Kidney Organoids (Gupta- Gallon Assay)

Immunofluorescence in FSGS Lesions

- Punctate IgG deposits associated with podocytes (co- deposition of nephrin and IgG with confocal IF microscopy) in a minority (=anti-nephrin Ab)
- ☐ IgM + C3 in 10-15% (?IgM Nephropathy)
- C1q and IgG deposits in <5%- (?C1q Nephropathy)
- IgG/IgA deposits in FSGS secondary to another glomerulopathy (MN, IgAN, LN)